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STRESS AND SHAPE ANALYSIS OF A PARAGLIDER WINGL

By Robert W. Fralich2

SUMMARY

29<L 5272 -
A combined aerodynamic-structural analysis is made which is based on the

assumption that the sail is flexible and has freedom to take the shape which the
aerodynamic pressure and the internal stresses dictate. Numerical results were
obtained for Newtonian impact aerodynamic theory and were compared with published
results obtained for a rigid idealization of the paraglider wing. It was found
that the assumed rigid idealization did not appfgximate the shape of a flexible
wing well and led to significant errors in the 1lift and drag forces and the

lift-to-drag ratio. The new calculations provide a basis for design of para-

gliders for hypersonic flight. ég25224252i;}1J

INTRODUCTION

The paraglider wing is under active development as a controllable lifting
device for landing space vehicles. It has also been suggested for other appli-

cations such as recovering rocket boosters and effecting reentry into the earth's

atmosphere. A typical configuration is shown in figure 1. (See also [ﬁ]a.)

It consists of leading-edge booms and a keel boom joined together at the nose

lThis paper is based on a dissertation submitted in partial fulfillment of
the requirements of the degree of Dector of Philosophy at Virginla Polytechnic
Institute, Blacksburg, Virginia, June 1963.

2Aerospace Engineer, NASA Langley Research Center, Langley Station,
Hampton, Virginia.

5Numbers in brackets designate references at end of paper.
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5 . .
and a flexible sall whose surface carries the aerodynamic pressure loading. The
payload is usually suspended beneath the wing by shroud lines. The distance
between booms 1s often constrained by use of spreader bars or by means of a
spring mechanism at the nose. Control is afforded by adjusting the length of
the shroud lines and thus positioning the payload with respect to the wing.

Various wind-tunnel and free-flight investigations have been made using
either flexible or rigid idealizations of paraglider wings in order to find
1lift and drag characteristics or stability and control characteristics. (See,
for example, [1—8].) None of the investigations on flexible sails yielded the
deflected shape, the pressure distribution on the sail, or the stresses 1n the
sall. Two investigations [5,6] on rigid idealizations did yield pressure dis-
tributions. However, these distributions apply to the fixed shape of the
idealized wing and only represent the distribution on an actual flexible sail
if the rigid idealization corresponds to the actual deflected shape of the
flexible wing.

In this paper a theoretical investigation is made which consists of a com-
bined structural and aerodynamic analysis. 1In this analysis, the sall 1is
assumed to be an inextensional, flexible membrane which has complete freedom to
take the shape which the aerodynamic pressures and the internal stresses dic-
tate. The assumptions are also made that the booms are rigid and straight and
that they have small enough cross sections so as not to affect the aerodynamics.
The booms are maintained a fixed distance apart by spreader bars, and the
dihedral of the leading-edge booms is fixed with respect to the keel boom.

The aerodynamic theory used is Newtonian impact theory, which has some-
times been used to express the aerodynamic pressure-shape relationship for the

hypersonic speed range. (See, for example, [9,1Q].) This choice of serodynamic
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theory is governed by two factors. First, Newtonlan theory leads to a simpli-
fied analysis which shows the applicability of the present approach in a simple
manner. Second, this aerodynamic theory has been applied in [7] to a rigid
idealization of a paraglider wing, and thus serves as a basis of comparison for
the numerical results. Numerical results are obtained for a flexible configu-
ration that corresponds to this rigid idealization in the sense that it has the
same surface planform and the same keel and leading-edge locations. The vari-
ations of 1lift and drag ccefficients with angle of attack are compared with
those for the rigid idealization and the deflected shape, pressure distribution,
and stress resultants in the sail are determined. Also, numerical results are
presented to show effects of variation in dihedral angle (raising or lowering

of the leading-edge booms) .
GOVERNING EQUATIONS

Geometry of the Sail

In this analysis the sail is assumed to be constructed from a flat, inex-
tensional membrane which may take some rather general shape in its loaded
equilibrium condition. By virtue of its lnextenslbility, it is possible to
establish appropriate coordinates in the surface by considering the sail in
its flat (unloaded) condition. (See fig. 2(a).) Points on the sail are thus
designated by the coordinates x and 6. Since the paraglider wing is sym-
metric about the Xy axis (fig. 1), and since only symmetric deformations and

loadings will be considered herein, only that portion of the wing in the first

quadrant need be considered. The keel boom, of length IK, is located at
6 = 0 and the leading-edge boom, of length ly, at 8 = eL. It is also assumed

that the trailing edge of the sail is straight; points on the trailing edge are
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expressed by the equation

1xA

- 1
*7 sin 6 + A cos 6 ( )

where

sin ©
A= - L (2)
—E - cos BL
1
L

and a subscript T has been added to indicate that the values of x from this
equation are values at the trailing edge.
For the x,0 polar coordinate system, the first fundamental form is given

by
ds2 = dx2 + x2 de° (3)

Since the booms are straight and rigid and lie on x-coordinate lines and since
deformations of the sail are assumed inextensional, the x,6 coordinate curves

are lines of principal curvature of the loaded surface for which

R = o
1
(&)
2
R~ = X
2" g

are the radii of principal curvature. This is a surface of zero Gaussian
curvature which has the second fundamental form gdeg. Note that the sign con-
vention on g differs from that usually employed in references in differential
geometry of surfaces in that, for positive curvature of the surface, the posi-
tive direction of the normal 1s outward. The only one of the Codazzl equations

of compatibllity (see [ll]) not identically satisfied becomes




g _g
> X (5)
Integration of equation (5) yields
X
= 6
) (6)

where R(e) is an arbitrary function of © alone. Then the radius of curva-

ture R, (eq. (4)) is
R, = xR(6) (7)

Equilibrium Equations
Equilibrium of the loaded sail is governed by the equilibrium equations
of membrane shells of zero Gaussian curvature (see, for example, [12]). In

terms of the x,8 coordinates, these are:

XNy x + Nyg,g + Ny - Ng =0 (8)
Nyg,x * Ng,g * MNyg = O (9)
Ng = RoX = x(RX) (10)

for the case where only normal pressure forces X act on the surface of the
sail. Here Ny and Ne are the normal stress resultants in the x and 6
directions, respectively, and Nyg 1s the shearing stress resultant. The
comma followed by a subscript denotes partial differentiation with respect to

this subscript.




Boundary Conditions
It is appropriate to consider force boundary conditions along a general

boundary contour C of the loaded surface. Thus, one may prescribe

2

2

(11)
PS = lele + (1132 + ngl)NXG + IESENG
where Py, and Pg are applied boundary forces per unit length in the surface
normal and tangent to C, respectively. Here 17 and 12 are the components
of the unit outward surface normal L to C and s; and s, are the compo-
nents of the unit tangent s (in the direction of increasing §). Since L

and S are orthogonal vectors

5117 + sply =0 (12)
512 + 522 =1 (13)
112+ 1,2 =1 (14)

From figure 3 it can be seen that

5. = dx
1~ gs
(15)
de
s = X —
2 ds

For a given boundary contour C, 8y and s, can be found from equa-
tions (13) and (15) and 1 and 1, from equations (12) and (14). Then the
force boundary conditions for the given contour are determined from

equations (11).
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Trailing-edge boundary conditions.- At the trailing edge the boundary con-

tour is expressed by equation (1). From equations (1) and (15) the following is

Obtained:

(sin © + A cos 8)s; + (cos 6 - A sin 8)so = 0 (16)

Simultaneous solution of equations (13) and (16) together with the solution of

equations (12) and (14) yields

1 X
5 = -lp = - ——E(COS 8 - A sin 9) (17
V1 + A
s2=Zl=-l—-(sine+Acos ) (18)
1 + A°

Now application of equation (11) along a stress-free trailing edge yields

(PL)T = ié-ﬁsin O + A cos B)E(NX)T

+ 2(cos 8 - A sin 6)(sin 8 + A cos 9)(Nxe)T
2
6 - A sin 8)2(N =0 (19)
+ (cos sin @) ( e)'l‘:l

and

1+A

(PS)T = _L_2 GSin 0 + A cos 8)(cos 6 - A sin 8) [(Ne)'l‘ - (NX>T:|
+ [(sin 6 + A cos 8)° - (cos 8 - A sin e)ﬂ(NXG)T} =0 (20)

Finally, equations (19) and (20) may be recast in convenient form by solving for

(NXB)T and (NX)T and using equations (1) and (10)




(NXG)T = <§§2>(RX)T (21)
and
de 2
(Nx>T = %(&T) (RX)p (22)

Nose boundary conditions.- The boundary conditions at the nose of the sail

are obtained by considering the limiting case of a stress-free boundary that
shrinks to a point. Hence the stress resultants Ny, Ne, and Nyg must

remain finite at this point.

Keel and leading-edge boundary conditions.- The boundary conditions at the

keel and leading edge are given by specifying the relative positions of the keel
and leading edge. Details of the specification of these boundary conditions

are reserved to a subsequent section.

ANATYSTS

Solution of Equilibrium Egquations
Substitution of the expression for Ne from equation (lO) into equa-

tions (8) and (9) yields

(XNX) N + Nyg 9 = x(RX) (23)

(xeNxe) L —xe(RX),

o (2k)

Integration of equation (24) gives

X
Nyg = - ;15 /; 8°(RX) qat (25)
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where the boundary condition for finiteness of the stress resultant at the nose
of the sail has been satisfied. Substitution of Nxe from equation (25) into

equation (25) and integration then yields

* 1 [foe
Ny =}£{ fo £(RX) + z fo N(RX) gqdh|dt (26)

where again, the boundary condition at x =0 has been imposed. Thus, the
stress resultants Ne, Nyg, and N, are readily expressed in terms of the
aerodynamic pressure X(x,6) and the single parameter R(9)

Now the boundary conditions (21) and (22) for stress resultants at the

tralling edge of the sail are seen to require:

S f 2(RX odt = (%—)(RX)T (27

X £ A \2
1 1 2 _ 1 (%X
%5 j; e(RX) + —52 fo A (RX),eed?\ dg = xT—(——de ) (RX) (28)

t should be noted that both equations (27) and (28) must be satisfied; how-

ver, only the one aribtrary function R(®) 1is available for satisfying these

wo conditions. Difficulties of this nature are commonly found when dealing with

embrane shells of zero Gaussian curvature (see, for example, [12]) and as a
‘esult membrane stress states can, in general, be obtained only in special

cases. For the straight trailing-edge boundary conditions considered in this
problem the fortunate situation arises that, for any aerodynamic pressures of

the type

X(x,8) = Z a,x"Z,,(6) (29

n=-1
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a single function R(e) can be found which satisfies.both equations (Eﬂ
and (28) and thus leads to true membrane stress states. Moreover, for aero-
dynamic pressures of this type, a straight trailing edge is necessary for
obtaining a membrane stress state that satisfies both trailing-edge boundary
conditions.

The parameter R(e) expresses the shape of the loaded surface of the sail
and the aerodynamic pressure X(x,6) is dependent on this shape. It is con-
venient for deriving a relationship between aerodynamic loading and the shape
to express the shape in terms of angles B(6) and ©(8) measured from the keel
location rather than by R(8). (See fig. 2(b).) 1In appendix A the param-
eter R(®) 1is found in terms of B, and ® is related to B via the condition

of inextensibility. The resulting equations are:

_ 1-(%)
R(6) = © (30)
2% , sin 1_<QE>2
d92 cos B de
and

2
4 _ 4+ 1 1 _ (4B 1
de cos B (d@) (31)

Application of Newtonian Impact Theory
The entire analysis up to this point is based upon equilibrium considera-
tion of the sall subjected to normal pressure, and the equations derived are not
dependent upon any specific aserodynamic theory. In this sectlion use is made of
Newtonian impact theory. (See, for example, [9,10].) This theory, often

used for hypersonic velocities, has the advantage of yielding pressures X
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which are functions of 6 alone and thus permitting satisfaction of the boundary
conditions (27) and (28). In addition, this aerodynamic theory has also been
applied in [7] to a rigid idealization of a paraglider wing; therefore, a direct
comparison can be made with the results of [7] to evaluate the use of rigid
models in the study of paraglider behavicr.

In Newtonian impact theory, the pressure at a point is given by the

relation

=2q sin®ec if €20

b
\

or (32)

5
[

0 if <O

where q 1s the dynamic pressure and ¢ 1is the angle between the local stream-
wise unit tangent vector and the free-stream velocity vector. Newtonian impact
theory requires that the moving stream gives up its "normal" component of
momentum (to the surface impacted) but retains the tangential component which
passes off tangentially to the local surface. Only portions of the surface that
"see" the flow have a nonzero pressure coefficient, as indicated in equa-

tions (32). The unit normal v to the surface has been determined in terms of
the parameters B and ® in appendix A (see eq. (52)). If it is noted that

sin € = cos(i,v) =1 - v, and use is made of equation (52), the pressure on the

sail at a given point (eq. (32)) is readily expressed as

2

X = 2q|(cos B sin a - sin B cos & cos a) ) + sin 3 cos a %E

_ (4B
' (de
(33)

From equation (33), it is evident that X 1is a function of 6 alone.

For this case, the boundary conditions (27) and (28) on the stress resultants
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at the trailing edge of the sail are satisfied by
(RX) = x_g? (34)
Here the constant of integration C 1is to be determined by the relative posi-
tions of the keel and leading edge.
Equation (34) upon substitution from equation (33) for X and equation (30)
for R yields a differential equation from which the deflected shape of the

sail is determined; thus
2

2 2
-1 - (QE) (cos B sin a - sin B cos & cos a) /1 - dB)" + cos a sin & 2B
de as de

30( .2 . 2
= ; __C_. <_l_ sin 8 + cos e) 9._6 + _S_]ﬁ’l__BE - (gé)jl
2lg1.0 \A 2 cos B as

1K a8 (35)

One other relation is needed. This is provided by integration of equation (31):

¢ 2
- 1 _ (dB
° L/; cos B ! (de) a8 (36)

The negative sign in equation (51) is ruled out since the lower (or upstream)
surface must "see" the flow. Solution of the simultaneous nonlinear equa-

tions (35) and (3%6), for B and ®, and satisfaction of specified conditions
B(GL) and s(eL), at the leading edge of the sail, determines the deflected
shape of the salil. This solution is effected by using finite differences to

represent derivatives of B with respect to 6:

(37)

TN
|D-4
n
AV} ko)
\__/
=
%ol
—
joe]
o]
+
[
1
hE
+
w
i
‘_—'
p




13
where A 1is the spacing of the stations and station n =0 1s taken at the

keel. Parabolic integration is employed to evaluate the integral in equa-

tion (36) so that

A
Oy = O%p-1 + I§(5fn + 8fp_q - fn-2) (38)

where

1 d
w8
os Bp n
Then, if values of (dB/de)O, (C /qZK3>, and angle of attack o are speci-

fied, equations (35) and (36) became two simultaneous equations for determining

5y and B4 in terms of their values at preceding stations. For each set of

selected values of (dB/de)O, (C/qlKB), and «, these equations are applied
successively to obtain a set of values of B(OL) and S(GL) at the leading
edge. The values of (dB/de)O and (C /qZK3> are then varied until the
deflected shape with the desired boundary values of B(GL) and 8(6L) is
obtained.

The stress resultants may now be evaluated. With the relations (34) for

RX, and (1) for xy equations (10), (25), and (26) become

\
Ng = Xd(sin 8 + A cos 6)3
qlKB AD
Ny = <_C.g>%sin 6 + A cos 6){cos 8 - A sin 6)2 > (39)
K
Nyg = -<—-3—>—(51n 6 + A cos 6) (cos 6 - A sin )

J




1h

where A 1is given by equation (2) and where (—ll—> has been determined in the
qlK

course of the numerical integration described above.
Determination of the two principal stress resultants yields the value zero

and

=_C_ ’ﬂ(l + A2)(sin 8 + A cos 8) (40)

ald A
acting perpendicular and parallel to the trailing edge, respectively. From fig-

ure 2(a) and equation (1) it can be seen that lines parallel to the trailing

edge are given by

X = (X)ezoA (L41)

sin 8 + A cos 9

so that along these lines the maximum principal stress resultant is a constant:

N =& (X)9=0q(1 + a2) (42)
qZK3 A%

Integration of the stress resultants given by equations (39) at the keel
and leading edge yields the resultant forces applied by the sall to the booms.
(See fig. 4.) Then by considering the components of the boom forces in the z,
and X0 directions, the 1lift and drag forces are obtained. The boom forces

and the 1ift and drag forces are determined in appendix B.

NUMERICAL RESULTS AND DISCUSSION

Numerical results are presented and discussed for a configuration that

corresponds in all possible respects to a rigid idealization analyzed

in [7]. This configuration has keel and leading-edge booms of equal length;
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and, in the undeflected flat condition, the angle 6f, (between the keel and
leading-edge booms) is 45°. Boundary conditions which locate the leading-edge
boom relative to the keel boom are chosen to correspond to the rigid idealiza-
tion identified in [7] as having "180° canopy inflation." These boundary

conditions are given by
Bep) =0

d(ey,) = 28.2°

which ylelds a distance between the ends of the leading-edge and keel booms

equal to

o
1

1K2J2 - 2 cos B(GL)cos 5(9L>

0.48721%

1

The differential equation (55), for the deflected shape, and its auxiliary
equation (36) were solved with finite differences applied at intervals of
A =1° 1in the variable 6. The problem was programed on a high-speed digitsal
computer, and deflected shapes were calculated for various angles of attack.
From the calculated deflected shapes, the pressure coefficient, the stress
resultants, the resultant forces applied by the sail to the booms, the 1lift and
drag coefficients, and the ratio of 1lift to drag were calculated for each angle
of attack. These results are given in table 1 and figures 5 through 7. The
deflected shape of the surface of the sall is shown by the solid curves in fig-
ure 5 for angles of attack of 30°, 60°, and 90°. Comparison with the rigid
idealization of [7] (the dashed curve) shows that the rigid idealization

is substantially in error at all angles of attack. The variation of pressure
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coefficient Cp = X/q with angle of attack is shown in figure 6. Figures 5
and 6 show that, as the angle of attack increases, the point of maximum deflec-
tion and the point of maximum pressure coefficient move outboard from the keel.

At any point on the sail, the directions of the principal stress resultants

are perpendicular and parallel to the trailing edge. The first one has the
value zero for all points on the sail. The other has a constant value N for
all points on a line parallel to the trailing edge. This value is obtained by

use of equation (42)

_ C
N =1.172 3 (x)e=oq
alg

where (x)e - 8&lves the intersection of the line with the keel. The magnitude

varies with angle of attack through the constant which can be obtained by

qZK3
use of table 1. The magnitude N 1is also proportional to the distance (x)e=o
from the nose. Note that the maximum stress is at the trailing edge and is a
quantity of principal interest in the design of the sail.

The 1ift and drag characteristics of the flexible wing are compared with
those for the rigid idealization in figures T(a) and T(b) which show that the
arbitrary shape used for the rigid idealization causes an overestimation of
the 1ift and drag forces over the complete range of angle of attack; however,
the same trends are apparent for both the rigid and flexible wings. The 1ift-
to-drag ratio (fig. 7(c)) which is a measure of the angle of glide, shows a very
significant difference for angles of attack below 50°. Computations were not
carried below 25° because of the large amount of computer time needed in order

to obtain the deflected shape in this range of angle of attack. This difficulty

arises because at low angles of attack small changes in the assumed values of
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C/q?.K3 and (dB/de)O produce large changes in the deflected shape. Presumably,
L/D drops abruptly at some lower value of a. But the results already show
that L/D for the flexible sail is more than three times the maximum value

of L/D for the rigid idealization.

The resultant forces, applied by the sail to the keel and leading-edge
booms, and the location of these forces are given in table 1. These values may
be used by the designer for calculating stresses in shroud lines and spreader
bars. Stresses in the booms may then be found by analyzing these booms as
free-free beams subjected to the self-equilibrating system of loads provided by
the sail, shroud lines, and spreader bars.

Effects of changing the dihedral of the wing were also considered. The

boundary conditions for this case correspond to maintaining the wvalue
d = 0.48721,

and specifying various values of B(BL). These computations were performed for
an angle of attack a = 35° in order to find deflected shapes, pressure dis-
tributions, boom forces, and 1ift and drag coefficients. The variation of the
force characteristics with dlhedral is given in table 2. The variation of lift
and drag coefficients with dihedral is shown in figure 8. The maximum values

of 1lift and drag coefficients are obtained for a dihedral angle of about -8°.
CONCLUDING REMARKS

Equilibrium equations for the sail of the paraglider wing have been derived
and integrated. Results are first obtained in rather general form for the

stress resultants in the sail, boom forces and 1ift and drag in terms of the
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pressure on the sail and a parameter that describes the deflected shape of the
sail. The specification of an appropriate aerodynamic theory - in the present
case, Newtonian impact theory - then permits satisfaction of the boundary condi-
tions at the trailing edge and calculation of the deflected shape of the sail.
Finally, the general formulas are applied to calculate the stress resultants,
lift, and drag.

Numerical results have been obtained and have been compared with published
results for a rigid idealization of the paraglider wing. The comparison shows
that the assumed shape of the rigid wing is considerably in error over the
complete range of angles of attack. Consequently, the 1ift and drag coeffi-
cients and, especially the lift-to-drag ratio, for the flexible wing are sig-
nificantly different from the values found for the rigid wing. Thus use of
rigid idealizations in wind-tunnel investigations to draw conclusions as to the
aerodynamic characteristics of the paraglider - especially the lift-to-drag
ratio - may be greatly misleading.

The calculated stress resultants and boom forces provide a basis for
design of sails, booms, shroud lines, and spreader bars for a paraglider in

hypersonic flight.
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APPENDIX A

SHAPE OF LOADED SURFACE OF THE SATL

In this appendix the shape of the loaded surface of the sail is represented
by the angles B and ® shown in figure 2(b)). The Xy-axis of the rectangular
Cartesian coordinates X7, yl, zq is alined with the keel of the paraglider

and the X1Z;-plane is the vertical plane of symmetry of the paraglider. Hence

zy =X sin B A
X; =X cos B cos B (43)
y| = X cos B sin d y

Consider the keel at an angle of attack a and define rectangular
Cartesian coordinates Xps Yp» 2Zg such that the Xp-axls is alined with the

direction of airflow. The XpZp-plane is coincident with the Xy z1-plane (fig. 1),

thus
_ X . N
zo = x(sin B cos @ - cos B cos B sin a)
xo = x(sin B sin @ + cos B cos ® cos a) (4lk)
Yo =x cos B sin ® )

Now if 2zy 1s treated as a function of Xgr Yoo representing the deflected

surface in the Xor Yor Zg coordinate system,

oz dz
0

and it can be shown from equations (44) and (45) that:
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3z -sin & cos a 38 4 (sin B cos & cos a - cos B sin a)cos B dd
0 _ de de <%)
on -sin & sin a %g + (sin B cos 8 sin a + cos B cos a)cos P g%
and
dap 4ad
aZO cos © I5 + sin B cos B sin © 1)

= 5 35 (A7)

Byo -sin & sin « a8 , (sin B cos & sin a + cos B cos a)cos B T
de

Also the square of the length of a line element on the deflected surface is

given by

2

2 2
ds® = dxg” + dyy~ + dzg (48)

which upon substitution from equations (44) and (45) yields

2 2
ds? = dx2 + x2@ [(9_‘3) + coseﬁ<@>:|d92 (L49)
de de

But inextensibility requires that the metric (eq. (3)) remain unchanged; thus,

it follows from equation (49) that:

2
s _ 4 1 1-‘1@) 0
de cos B (de (50)

The unit outward normal to the deflected surface is given by
0z~ - Ozp - -
1 07 - 03 +k (51)

i
2 2
<iz_9> R (EEQ> ‘1
X, Byo

1/2| oxq A,
where the positive sign refers to surfaces which are concave downward, and the

<1

I+

minus sign to those which are concave upward. The unit normals i, 3, and k

are directed along the X0~ Yo~ and Z,-axes as shown in figure 1. Upon sub-

oz oz
stitution from equations (46), (47), and (50) for —2, —2, and %%

X0 a3’0’
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equation (51) yields

2 -
vV = [%cos B sin a - sin P cos B cos q)\/l - (%g) + sin & cos a %S i

2
- Isin B sin &1 - gﬁ) + cos O QE 5
i s de

3
ap\ ap
+ |(cos B cos o + sin B cos ® sin a),[1 - (——) - sin & sin a —=lk
ds

N do
(52)
The unit tangential vector in the x-direction is given by
T = (sin B sin a + cos B cos & cos a)i
+ (cos B sin 8)3 + (sin B cos @ - cos B cos & sin a)k (53)
and the unit tangential vector in the 0-direction by
G ag|=
= |-sin & cos a1 - [2B) + (cos B sin a - sin B cos ® cos a)—=|i
de de
ap\° ag|=
+ jJjcos &,/1 - <——) - sin B sin & ==|J
| de de
ap\ ap |-
+ |sin & sin a /1 - (EE) + (cos B cos a + sin B cos & sin a)aa k
~ (54)

The quantity g can be expressed in terms of V¥ and ?2 [li] and then in

terms of the angle B by using equations (52) and (54):

sinﬁ[} - (éﬁ)E:l.+ a°p (55)

- - -X
T2'V’2=-—
2 \cos B dae
1 - (4B
ae

g =X
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can be expressed in terms of the

Then from equation (6) the function R(8)
quantity B as follows:
2
1 - (9@)
R(8) = ds
2 R 2
d=p + 5in B 1 - ag
de2 cos B de

(56)



APPENDIX B
CALCULATION OF LIFT AND DRAG FORCES ON THE PARAGLIDER WING

In this section the 1ift and drag forces are derived. As a preliminary
step, the resultant forces applied by the sail to the keel and leading-edge
booms are obtained. These resultant forces and their locations are useful in

obtaining the forces in the shroud lines and spreader bars of the paraglider.

The resultant force applied to the keel by the half of the sail considered
in the analysis is obtained by integration of the stress resultants for the
sail along the keel boundary. Since the tangent vectors along the keel do not

vary with x the vector equation for the force is given by

— - 'k _ s
Fg = (Tl)K f (Nxe)ezodx + (TQ)K f (Ne)e=0d.x (57)
0 0

and this force acts through the point x = Xy of the keel, where

Xx = ( 58)

L () 0

Here T and T are the unit tangent vectors of the surface at the
1 K 2 K

keel (egqs. (53) and (54) evaluated at © = 0). Similarly, the vector equation
for resultant force applied by the sail to the leading-edge boom is given by
A TR R S (59
= ={T - (T dx
L ( l)L Jo ( xe)e:eL ( 2)L o ( 9>e=eL 29

and this force acts through the point x = xg, of the leading edge where




2k

i
\/; x(Ne)ezede
XL = ZL
L/; (Ne>6=6LdX

In equation (59) (?l)L and (?g)L are the unit tangent vectors of the surface

(60)

(egs. (53) and (54)) at the leading edge 6 = 6 -
It is necessary now to determine the components of fk and ﬁi in the

Xos Yo, 8nd zo directions. For example, the component of fK in the

X, direction 1s gilven by

F = F, . i=cos a L/hZK N dx + si dB /ﬁlK N dx
o, Fe R e 3 I AR LY

0 de Jo
(61)
or for Newtonian impact theory (eq. (39)) in nondimensional form:

(62)
(63)

Fxz /1
O . % ¢ KI'L L gin o+ <QE> cos a (64)

as ql 3 |sin 81, |A 0=

Frae 1/c (1x/iL) cos 6, - 11/lk - (65)
T T3 3] s ey sin oy, >




25

2
"Lyo _1/.c (ZK/lL) [Jl c0s 91 - L/l J2> (66)
qS 2 q1K5 sin Oy, \ sin GL
2
Freg _1/c (13/1L) G?l cos e? - 1/l Ké) (67)
asS 2 q1K5 sin By, sin O
where
I, = sin B(GL)sin a + cos B(eL)cos 8(9L>cos a (68)
J, = cos B(GL)sin 6(6L) (69)
K; = sin B(GL)cos a - cos B(eL)cos B(GL)sin Iod ('70)

I, = -sin 6<6L)cos a [L - <§£>2

48 /g=,
+ [cos B(GL)sin a - sin B(GL)cos B(GL)COS c{](%—%) (71)
6=9
2
Jdo = cos B(GL) \/l - (%) - sin B(GL)sin S(BL)<3—§> (72)
9=8L g=

. ap\°
K2 = sin S(OL)sin a |1 - (£>

6 =9L

+ EOS B(GL)cos a + sin B(GL)cos 6(6L)sin a.](ﬁ

T (73)

s

The coordinates xXgg, etc. (fig. 4) through which these forces act may be

written with the aid of equations (44), (58), and (60) as



Xog = % lg cos a (74)
Yog = © (75)
2oy = - 2 1, sin @ (76)
oK ~ 3 K
2 ,
Yo 3 1y (78)
Zor, = % 1Ky (79)

Finally, when both halves of the symmetrical sail are considered (fig. 4), the

1ift and drag coefficients can be expressed as follows:
Cl, = =

= qS(FKZO + FLZo> (80)

= q%(FKXO + FLXO> (81)

where L and D are the 1lift and drag forces, respectively, on the wing;

L Ve is the dynamic pressure, and

S = Ul sin o (82)
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is the total surface area of the sail. The resultant of the 1ift and drag

forces acts through the point (io, 90) where

X g + X~ F

- OL" Lz 0K 'K
X0 =% < 0 (83)
LzO

and

ZAr I + Z~p P
Eo - OL Ixp . "OK'Kxq (84)
F +F
on Kxo

Equations (80) and (81) have been used to obtain the results shown in figures 7

and 8.
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TABLE 1.-

FORCE CHARACTERISTICS OF A PARAGLIDER WING

AT VARIOUS ANGLES OF ATTACK, a

7, "o - 45 (o) = 05 5(er) = 28.2% SE - o.u87%}
25 30 35 Lo L5 7 50 55
0.99895 | 0.99603 .99234 | 0.98834 | 0.98433 | 0.980k 9767
.00%135 | .01046 .01979 | .03%3218 | .oW716 | .06450 | .08343
.000137 | .00103 .00322 | .00T72k | .0134 .0221 .0332
.00013k4 | .000658| .00173| .00346 | .00588| .00899 | .o0127
.00316 .00791 .OLk7 .0233 .0330 .0k32 .0531
.000791 | .002u4k4 .00548 | .0103 L0173 .0265 .0379
-.0024k4 | -.00578 .0103 | -.0159 | -.0221 | -.0289 .0357
.00185 .00k97 .00967 | .0157 .0227 .0300 .0369
.60k 57T . 546 .511 b7 428 .382
0 0 0 0 0
-.282 -.333 .382 -.428 -.4k71 -.511 .546
533 .508 .481 450 415 377 .336
.315 .315 315 .315 315 .315 .315
-.248 -.294 .337 -.377 -6 -.450 .482
0100 .0258 .0Lk87 .0780 111 146 .180
00185 .00695 Moyt .0351 .0615 .0973 .1h2
5.40 3.71 .80 2.22 1.81 1.51 .27
.578 .551 .520 486 kg .408 .36k4
-.25% -.306 L3504 -.398 -.4ho ~-.478 .512




TABLE 1.- FORCE CHARACTERISTLCS OF A PARAGLIDER WING

AT VARTIOUS ANGLES OF ATTACK,

a - Concluded

a, deg 60 65 70 75 80 85 90

(ap/ag)y | 0.9732 | 0.9698 | 0.9665 | 0.9639 | 0.9597 | 0.9562 | 0.9527
¢/alg’ L1035 | .1243 | .1k5 | L1648 | 1832 | .2003 | .21h5
FKXO /qS .0L65 L0619 .0783 .0959 .113 .130 L1k
FKyO / as .0168 .021k4 .9262 L0O31h .0%6k4 .0k15 Nolllsy)
FKZO /qS .0619 .0690 .0735 0757 LOThk .0702 . 0628
FLXO /qS .0512 .0662 .0822 .0991 .115 .131 J1kk
FLyo /qS -.0k26 | -.0k92 .0550 | -.0604 | -.0648 | -.0683 | -.0703
Fl.z o /qS .ok2g .04T3 .0k96 .0k95 .0L68 .0k15 .0336
xok [k .333 .282 .228 172 116 .0581 | 0

Yok [k 0 0 0 0 0 0
zOK/lK -.577 -.60k4 .626 -.64k4 -.656 - .66k -.667
xorn [k -293 .248 .200 151 .102 051k | 0

YoL [k 2315 .315 .315 .315 .315 .315 2315
zopflk | --509 | -.532 | -.552 | -.5%68 | -.579 | -.585 | -.587
Cr, .209 .233 .2k6 .250 .2h2 .223 .193
Cp .195 2% 321 -390 457 .521 578
L/D 1.07 .908 .67 642 .531 .h2g 334
X / Ik 317 .268 .217 164 .110 .05% | 0
Zo/lL, -.54k2 -.567 .589 -.605 -.617 -.624 -.627

31
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TABLE 2.- FORCE CHARACTERISTICS OF A PARAGLIDER WING

AT VARIOUS DIHEDRAL ANGLES, B(BL)

= 1; eL = 14.50; .{i_ = O.M872; a = 35Cj
K

B(GL), deg | -15 -10 -5 0 5 10 1k b
(dB/de)O 0.98727 [ 0.98702 | 0.98905 | 0.99234 | 0.995T4 | 0.99842 |0.99970
C/§1K5 01894 | .02126 | .02153 | .01979 | .01645 | .01190 | .007500
FKxo/qS 0030k | .00341 | .0034T | .00322 | .00270 | .00196 | .00124
FKyO/qS 00213 | .00241 | .00225 | .0OL73 | .00107 | .00OWT3| .000130
FKZO/qS 0140 .0157 .0160 -OLL7 .0123 .00888 | .00%60
Fon/qS 00778 | .00787 | .0070L | .00548 | .00366 | .00192 | .000T60
FLyO/qS -.00633 | -.00859 | -.0100 |-.0103 | -.00935 |-.00723 |-.00475
FLZO/qS 0105 011k .0110 .00967 | .00760 | .00520 | .00313
xok [ 1K .5k6 .5k6 -5k6 .5k6 .546 .5k6 .5k6
yOK/lK 0 0 0 0
ZOK/ZK -.382 -.382 .382 -.382 -.382 . 382 .382
oL/ .383 415 448 L8 .515 .548 .576
yOL/lK .264 .293 .310 .315 .310 .293% .368
ZOL/lK 478 | -.u31 384 | -.337 | -.289 .2hp .201
Cy, .0490 .05k2 .0540 .ok87 .0397 .0281 L0175
Cp .0216 .0226 .0210 o174 .0127 .00T777 | .00400
L/D 2.26 2.40 .57 2.80 3.12 .62 .37
io/lK 476 kg1 .506 . 520 .53 54T 557
7o/ R R 384 | -.354 | -.309 .313 .31k
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Flexible sail

Keel boom

Leading-edge boom
Spreader bar

Shroud lines
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Figure 1.- Paraglider wing configuration.
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(a) Unloaded surface of sail. NASA

Figure 2.- Cocordinates of sail.
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(b) Loaded surface of sail. NASA

Figure 2.- Concluded.



Figure 3.- Boundary vectors.
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Figure 4.- Resultant forces applied by the sail to the keel and
leading-edge booms.
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Figure 6.- Variation of pressure coefficient with angle of attack.




Rigid idealization
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Figure 7.- Comparison of 1lift and drag characteristics of paraglider
wing with those of the rigid idealization.
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Figure T7.- Concluded.
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Figure 8.- Variation of 1ift and drag characteristics of paraglider
wing with dihedral angle pB(61). Angle of attack, a = 35°.

NASA -Langley, 1964



